Quantum Krylov algorithms for ground state energy approximation

Will Kirby

IBM Quantum

IBM Research Cambridge, 314 Main St, Cambridge, MA

IBM Quantum

Motivation

Estimate ground state energy of quantum Hamiltonian.

Abstract perspective: approximate lowest eigenvalue of Hermitian matrix.

Goal is classically challenging due to exponential Hilbert space dimension^{*}.

*Assuming general, hard case: sufficiently entangled, supported on exponentially-many basis states, etc.

Example applications:

- Quantum chemistry.
- Condensed matter physics.
- Nuclear physics.
- High-energy physics.

Lanczos method

= classical method for approximating lowest eigenvalues.

High-level idea:

- 1.
- Initial guess $|\psi_0\rangle \Rightarrow H|\psi_0\rangle \Rightarrow \dots \Rightarrow H^{D-1}|\psi_0\rangle$ (**H**, **S**) = project *H* onto span[$|\psi_0\rangle, H|\psi_0\rangle, H^2|\psi_0\rangle, \dots, H^{D-1}|\psi_0\rangle$] 2.

Lowest eigenvalue of (**H**, **S**) i.e., of $\mathbf{H}\mathbf{v} = \lambda \mathbf{S}\mathbf{v}$, approximates lowest eigenvalue of H 3.

Krylov space

Lanczos method

Caveat: typically in classical Lanczos(-like) methods, would orthogonalize along the way... challenging in quantum implementations.

Advantage: converges exponentially with D (in ∞ precision arithmetic).

Disadvantage: classically, requires storing entire statevectors $H^i | \psi_0 \rangle \Rightarrow$ exponential overhead.

Can we construct a quantum version that mitigates statevector overhead while keeping fast convergence?¹

¹ Klymko *et al.*, PRX Quantum 3, 020323 (2022); Epperly *et al.*, SIAM J. Mat. An. Appl. 43, 1263-1290 (2022); and many more!

Quantum "Lanczos method" = "Quantum Krylov"

Options for generating Krylov space: multiply $|\psi_0\rangle$ by...

- Powers of H same as original Lanczos \Rightarrow nontrivial on quantum but possible in principle.¹
- $e^{-Hk dt}$ this version claimed "Qlanczos."
- $e^{iHk dt}$ many good options e.g. Trotterization, qubitization, etc.
- $T_k(H)$ arises naturally from block encoding.

Will focus on last two in this talk.

¹Seki and Yunoki, PRX Quantum 2, 010333 (2021)

Quantum Krylov with real time-evolutions

Majority of works have focused on Krylov states generated by real time-evolution:

$$V = [|\psi_0\rangle, \quad U|\psi_0\rangle, \quad U^2|\psi_0\rangle, \dots, U^{D-1}|\psi_0\rangle] \text{ for } U = e^{iHdt}$$

Need to estimate

 $\mathbf{H_{jk}} = \langle \psi_0 | (U^j)^{\dagger} H U^k | \psi_0 \rangle,$ $\mathbf{S_{jk}} = \langle \psi_0 | (U^j)^{\dagger} U^k | \psi_0 \rangle$

for each j, k = 0, 1, ..., D - 1.

Estimating matrix elements (simple version)

Targets: $\mathbf{H}_{\mathbf{jk}} = \langle \psi_0 | (U^j)^{\dagger} H U^k | \psi_0 \rangle$, $\mathbf{S}_{\mathbf{jk}} = \langle \psi_0 | (U^j)^{\dagger} U^k | \psi_0 \rangle$.

Can approach using Hadamard test:*

 $\text{Yields } \langle X \rangle_a = Re\left[\langle \psi_0 | (U^j)^{\dagger} P U^k | \psi_0 \rangle \right], \quad \langle Y \rangle_a = Im\left[\langle \psi_0 | (U^j)^{\dagger} P U^k | \psi_0 \rangle \right]$

*Cortes and Gray, 2021.

Estimating matrix elements (better version)

Change target slightly: $\mathbf{U}_{\mathbf{jk}} = \langle \psi_0 | (U^j)^{\dagger} U U^k | \psi_0 \rangle$, $\mathbf{S}_{\mathbf{jk}} = \langle \psi_0 | (U^j)^{\dagger} U^k | \psi_0 \rangle$.

Suppose Hamiltonian preserves particle number (Hamming weight)...

$$|0\rangle^{N} \qquad \text{prep } |\psi_{0}\rangle \qquad U^{p} \qquad (\text{prep } |\psi_{0}\rangle)^{\dagger} \qquad (\text{prep } |\psi_{0}\rangle)^{\dagger} \qquad (\text{prep } \frac{1}{\sqrt{2}}(|0\rangle^{N} + |\psi_{0}\rangle))^{\dagger} \qquad (\text{prep } \frac{1}{\sqrt{2}}(|0\rangle^{N} + |\psi|^{\dagger}))^{\dagger} \qquad (\text{prep } \frac{1}{\sqrt{2}}(|0\rangle^{N} +$$

Quantum Krylov with real time-evolutions

Summary:

- Estimate H_{ik} , S_{ik} via Hadamard(-ish) tests and repeated sampling.
- Depending on Hamiltonian, can sometimes avoid controlled time-evolutions using symmetries.¹
- Advantage: can use crude approximations for time-evolution to get low circuit depth.
- Disadvantage: time-evolution always approximated more accuracy requires more depth.

¹Cortes and Gray, Phys. Rev. A 105, 022417 (2022).

The most accurate simulations of time-evolution require Hamiltonian input as block encoding.¹

Block encoding: for *H* on *n* qubits (s.t. $||H|| \le 1$), find *U* on m + n qubits s.t.

$$U^{2} = 1 \qquad (RU)^{j} = \left(\begin{array}{c} T_{j}(H) & \cdot \\ \cdot & \cdot \end{array} \right)$$

Brief proof:
1. Let
$$H | \lambda \rangle = \lambda | \lambda \rangle$$
 and $U = | G \rangle \langle G | \otimes H + ...$
2. $\Rightarrow U | G \rangle | \lambda \rangle = \lambda | G \rangle | \lambda \rangle + \sqrt{1 - \lambda^2} | \perp \rangle \Rightarrow U \sim \begin{pmatrix} \lambda & \cdot \\ \sqrt{1 - \lambda^2} & \cdot \end{pmatrix}$
3. $U^2 = 1 \Rightarrow U \sim \begin{pmatrix} \lambda & \sqrt{1 - \lambda^2} \\ \sqrt{1 - \lambda^2} & -\lambda \end{pmatrix} \Rightarrow RU \sim \begin{pmatrix} \lambda & \sqrt{1 - \lambda^2} \\ -\sqrt{1 - \lambda^2} & \lambda \end{pmatrix}$
reflection rotation

$$(RU)^{j} = \left(\begin{array}{cc} T_{j}(H) & \cdot \\ \cdot & \cdot \end{array} \right)$$

 \Rightarrow Can use block encoding to exactly construct $T_j(H) | \psi_0 \rangle$

Recall: Lanczos method ~ project *H* onto

$$span\{ |\psi_0\rangle, H |\psi_0\rangle, H^2 |\psi_0\rangle, \dots, H^{D-1} |\psi_0\rangle \}$$

= span{ $|\psi_0\rangle, T_1(H) |\psi_0\rangle, T_2(H) |\psi_0\rangle, \dots, T_{D-1}(H) |\psi_0\rangle$

 $\mathbf{H}_{\mathbf{jk}} = \langle \psi_0 \,|\, T_j(H) H T_k(H) \,|\, \psi_0 \rangle$

$$= \frac{1}{4} \left(\left\langle T_{i+j+1}(H) \right\rangle_{0} + \left\langle T_{|i+j-1|}(H) \right\rangle_{0} + \left\langle T_{|i-j+1|}(H) \right\rangle_{0} + \left\langle T_{|i-j-1|}(H) \right\rangle_{0} \right) \right)$$

$$\mathbf{S_{jk}} = \langle \psi_0 | T_j(H) T_k(H) | \psi_0 \rangle = \frac{1}{2} \left(\left\langle T_{i+j}(H) \right\rangle_0 + \left\langle T_{|i-j|}(H) \right\rangle_0 \right)$$

for j, k = 0, 1, 2, ..., D - 1. In other words, need to estimate

 $\langle T_k(H) \rangle_0 = \langle \psi_0 | T_k(H) | \psi_0 \rangle$

for k = 0, 1, 2, ..., 2D - 1.

Since
$$(RU)^{j} = \begin{pmatrix} T_{j}(H) & \cdot \\ \cdot & \cdot \end{pmatrix}$$

 $\Rightarrow \quad \langle T_k(H) \rangle_0 = \langle \psi_0 | T_k(H) | \psi_0 \rangle = (\langle G | \otimes \langle \psi_0 |)(RU)^k (| G \rangle \otimes | \psi_0 \rangle)$

$$= \begin{cases} (\langle G | \otimes \langle \psi_0 | \rangle (UR)^{\lfloor k/2 \rfloor} R (RU)^{\lfloor k/2 \rfloor} (|G\rangle \otimes |\psi_0\rangle) & \text{if } k \text{ is even,} \\ \underbrace{(\langle G | \otimes \langle \psi_0 | \rangle (UR)^{\lfloor k/2 \rfloor}}_{\langle \Psi_k |} U \underbrace{(RU)^{\lfloor k/2 \rfloor} (|G\rangle \otimes |\psi_0\rangle)}_{|\Psi_k\rangle} & \text{if } k \text{ is odd .} \end{cases}$$

That yields the necessary circuits: for each k = 0, 1, 2, ..., D - 1...

Regularizing the Krylov space

- Either real-time or block-encoding Krylov methods yield noisy estimates of (\mathbf{H}, \mathbf{S}) .
- Want to solve $\mathbf{H}\mathbf{v} = \lambda \mathbf{S}\mathbf{v}$.
- Ill-conditioned if S is ill-conditioned \Rightarrow need to regularize.
- "Canonical orthogonalization" or "thresholding": project (H, S) onto eigenspaces of S above threshold ϵ .

• S is metric in Krylov space \Rightarrow choose threshold \sim noise rate \Rightarrow discards vectors compatible with 0.

Error analysis

- Real-time: analyzed in Epperly et al., SIAM J. Mat. An. Appl. 43, 1263-1290 (2022).
- Block-encoding: in our paper, modification of Epperly's analysis.
- Three main error terms:

error from Krylov space + error from thresholding + error from noise

- First two terms high-level idea of proof:
 - Krylov space = span[$|\psi_0\rangle$, $T_1(H) |\psi_0\rangle$, $T_2(H) |\psi_0\rangle$, ..., $T_{D-1}(H) |\psi_0\rangle$] = poly_{D-1}(H) $|\psi_0\rangle$
 - \Rightarrow Best poly approx to delta function at E_0 = approx ground space projector in Krylov space.
 - Thresholding \Rightarrow perturbation of Chebyshev expansion coefficients of projector.

Error analysis

"In practice" results: 1 to reach energy error \mathscr{C} , require...

Krylov space dimension
$$D = \Theta \left[\left(\log \frac{1}{|\gamma_0|} + \log \frac{1}{\mathscr{C}} \right) \min \left(\frac{1}{\mathscr{C}}, \frac{1}{\Delta} \right) \right],$$

Measurements per dimension
$$M = \Theta\left(\frac{1}{\mathscr{E}^2} + \frac{1}{\mathscr{E}|\gamma_0|^4}\right)$$

where γ_0 = initial state overlap with low-energy subspace, Δ = spectral gap.

¹ "In practice" because theoretical bound only guarantees first term in M is \mathscr{C}^{-p} for $p \in [2,3]$; p = 2 is based on numerics.

² Above is for block-encoding; real-time Krylov space analysis is similar.

Comparing theory to numerics

 δ free, best choice is $\delta = \Theta(\max(\text{target error}, \Delta))$

Questions?

Will Kirby, Mario Motta, and Antonio Mezzacapo, Quantum 7, 1018 (2023),

https://quantum-journal.org/papers/q-2023-05-23-1018/.